Attribute-Induced Bias Eliminating for Transductive Zero-Shot Learning

31 May 2020 Hantao Yao Shaobo Min Yongdong Zhang Changsheng Xu

Transductive Zero-shot learning (ZSL) targets to recognize the unseen categories by aligning the visual and semantic information in a joint embedding space. There exist four kinds of domain biases in Transductive ZSL, i.e., visual bias and semantic bias between two domains and two visual-semantic biases in respective seen and unseen domains, but existing work only focuses on the part of them, which leads to severe semantic ambiguity during the knowledge transfer... (read more)

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet