Audio Attacks and Defenses against AED Systems -- A Practical Study

14 Jun 2021  ·  Rodrigo dos Santos, Shirin Nilizadeh ·

In this paper, we evaluate deep learning-enabled AED systems against evasion attacks based on adversarial examples. We test the robustness of multiple security critical AED tasks, implemented as CNNs classifiers, as well as existing third-party Nest devices, manufactured by Google, which run their own black-box deep learning models. Our adversarial examples use audio perturbations made of white and background noises. Such disturbances are easy to create, to perform and to reproduce, and can be accessible to a large number of potential attackers, even non-technically savvy ones. We show that an adversary can focus on audio adversarial inputs to cause AED systems to misclassify, achieving high success rates, even when we use small levels of a given type of noisy disturbance. For instance, on the case of the gunshot sound class, we achieve nearly 100% success rate when employing as little as 0.05 white noise level. Similarly to what has been previously done by works focusing on adversarial examples from the image domain as well as on the speech recognition domain. We then, seek to improve classifiers' robustness through countermeasures. We employ adversarial training and audio denoising. We show that these countermeasures, when applied to audio input, can be successful, either in isolation or in combination, generating relevant increases of nearly fifty percent in the performance of the classifiers when these are under attack.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods