Auditing $f$-Differential Privacy in One Run

29 Oct 2024  ·  Saeed Mahloujifar, Luca Melis, Kamalika Chaudhuri ·

Empirical auditing has emerged as a means of catching some of the flaws in the implementation of privacy-preserving algorithms. Existing auditing mechanisms, however, are either computationally inefficient requiring multiple runs of the machine learning algorithms or suboptimal in calculating an empirical privacy. In this work, we present a tight and efficient auditing procedure and analysis that can effectively assess the privacy of mechanisms. Our approach is efficient; similar to the recent work of Steinke, Nasr, and Jagielski (2023), our auditing procedure leverages the randomness of examples in the input dataset and requires only a single run of the target mechanism. And it is more accurate; we provide a novel analysis that enables us to achieve tight empirical privacy estimates by using the hypothesized $f$-DP curve of the mechanism, which provides a more accurate measure of privacy than the traditional $\epsilon,\delta$ differential privacy parameters. We use our auditing procure and analysis to obtain empirical privacy, demonstrating that our auditing procedure delivers tighter privacy estimates.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here