Autoencoder-based Attribute Noise Handling Method for Medical Data

20 Jun 2022  ·  Thomas Ranvier, Haytham Elgazel, Emmanuel Coquery, Khalid Benabdeslem ·

Medical datasets are particularly subject to attribute noise, that is, missing and erroneous values. Attribute noise is known to be largely detrimental to learning performances. To maximize future learning performances it is primordial to deal with attribute noise before any inference. We propose a simple autoencoder-based preprocessing method that can correct mixed-type tabular data corrupted by attribute noise. No other method currently exists to handle attribute noise in tabular data. We experimentally demonstrate that our method outperforms both state-of-the-art imputation methods and noise correction methods on several real-world medical datasets.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here