AUTOMATA GUIDED HIERARCHICAL REINFORCEMENT LEARNING FOR ZERO-SHOT SKILL COMPOSITION

ICLR 2018  ·  Xiao Li, Yao Ma, Calin Belta ·

An obstacle that prevents the wide adoption of (deep) reinforcement learning (RL) in control systems is its need for a large number of interactions with the environment in order to master a skill. The learned skill usually generalizes poorly across domains and re-training is often necessary when presented with a new task. We present a framework that combines techniques in \textit{formal methods} with \textit{hierarchical reinforcement learning} (HRL). The set of techniques we provide allows for the convenient specification of tasks with logical expressions, learns hierarchical policies (meta-controller and low-level controllers) with well-defined intrinsic rewards using any RL methods and is able to construct new skills from existing ones without additional learning. We evaluate the proposed methods in a simple grid world simulation as well as simulation on a Baxter robot.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here