Automated detection of smuggled high-risk security threats using Deep Learning

9 Sep 2016Nicolas JaccardThomas W. RogersEdward J. MortonLewis D. Griffin

The security infrastructure is ill-equipped to detect and deter the smuggling of non-explosive devices that enable terror attacks such as those recently perpetrated in western Europe. The detection of so-called "small metallic threats" (SMTs) in cargo containers currently relies on statistical risk analysis, intelligence reports, and visual inspection of X-ray images by security officers... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet