Automated Polysomnography Analysis for Detection of Non-Apneic and Non-Hypopneic Arousals using Feature Engineering and a Bidirectional LSTM Network

Objective: The aim of this study is to develop an automated classification algorithm for polysomnography (PSG) recordings to detect non-apneic and non-hypopneic arousals. Our particular focus is on detecting the respiratory effort-related arousals (RERAs) which are very subtle respiratory events that do not meet the criteria for apnea or hypopnea, and are more challenging to detect. Methods: The proposed algorithm is based on a bidirectional long short-term memory (BiLSTM) classifier and 465 multi-domain features, extracted from multimodal clinical time series. The features consist of a set of physiology-inspired features (n = 75), obtained by multiple steps of feature selection and expert analysis, and a set of physiology-agnostic features (n = 390), derived from scattering transform. Results: The proposed algorithm is validated on the 2018 PhysioNet challenge dataset. The overall performance in terms of the area under the precision-recall curve (AUPRC) is 0.50 on the hidden test dataset. This result is tied for the second-best score during the follow-up and official phases of the 2018 PhysioNet challenge. Conclusions: The results demonstrate that it is possible to automatically detect subtle non-apneic/non-hypopneic arousal events from PSG recordings. Significance: Automatic detection of subtle respiratory events such as RERAs together with other non-apneic/non-hypopneic arousals will allow detailed annotations of large PSG databases. This contributes to a better retrospective analysis of sleep data, which may also improve the quality of treatment.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods