Automated proof synthesis for propositional logic with deep neural networks

30 May 2018 Taro Sekiyama Kohei Suenaga

This work explores the application of deep learning, a machine learning technique that uses deep neural networks (DNN) in its core, to an automated theorem proving (ATP) problem. To this end, we construct a statistical model which quantifies the likelihood that a proof is indeed a correct one of a given proposition... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet