Automated Reasoning Using Possibilistic Logic: Semantics, Belief Revision and Variable Certainty Weights

27 Mar 2013  ·  Didier Dubois, Jerome Lang, Henri Prade ·

In this paper an approach to automated deduction under uncertainty,based on possibilistic logic, is proposed ; for that purpose we deal with clauses weighted by a degree which is a lower bound of a necessity or a possibility measure, according to the nature of the uncertainty. Two resolution rules are used for coping with the different situations, and the refutation method can be generalized. Besides the lower bounds are allowed to be functions of variables involved in the clause, which gives hypothetical reasoning capabilities. The relation between our approach and the idea of minimizing abnormality is briefly discussed. In case where only lower bounds of necessity measures are involved, a semantics is proposed, in which the completeness of the extended resolution principle is proved. Moreover deduction from a partially inconsistent knowledge base can be managed in this approach and displays some form of non-monotonicity.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here