Automated Scoring: Beyond Natural Language Processing

COLING 2018  ·  Nitin Madnani, Aoife Cahill ·

In this position paper, we argue that building operational automated scoring systems is a task that has disciplinary complexity above and beyond standard competitive shared tasks which usually involve applying the latest machine learning techniques to publicly available data in order to obtain the best accuracy. Automated scoring systems warrant significant cross-discipline collaboration of which natural language processing and machine learning are just two of many important components. Such systems have multiple stakeholders with different but valid perspectives that can often times be at odds with each other. Our position is that it is essential for us as NLP researchers to understand and incorporate these perspectives in our research and work towards a mutually satisfactory solution in order to build automated scoring systems that are accurate, fair, unbiased, and useful.

PDF Abstract COLING 2018 PDF COLING 2018 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here