Automatic Check-Out via Prototype-based Classifier Learning from Single-Product Exemplars

Automatic Check-Out (ACO) aims to accurately predict the presence and count of each category of products in check-out images, where a major challenge is the significant domain gap between training data (single-product exemplars) and test data (check-out images). To mitigate the gap, we propose a method, termed as PSP, to perform Prototype-based classifier learning from Single-Product exemplars. In PSP, by revealing the advantages of representing category semantics, the prototype representation of each product category is firstly obtained from single-product exemplars. Based on the prototypes, it then generates categorical classifiers with a background classifier to not only recognize fine-grained product categories but also distinguish background upon product proposals derived from check-out images. To further improve the ACO accuracy, we develop discriminative re-ranking to both adjust the predicted scores of product proposals for bringing more discriminative ability in classifier learning and provide a reasonable sorting possibility by considering the fine-grained nature. Moreover, a multi-label recognition loss is also equipped for modeling co-occurrence of products in check-out images. Experiments are conducted on the large-scale RPC dataset for evaluations. Our ACO result achieves 86.69%, by 6.18% improvements over state-of-the-arts, which demonstrates the superiority of PSP. Our codes are available at

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.