Automatic Construction of Sememe Knowledge Bases via Dictionaries

A sememe is defined as the minimum semantic unit in linguistics. Sememe knowledge bases (SKBs), which comprise words annotated with sememes, enable sememes to be applied to natural language processing. So far a large body of research has showcased the unique advantages and effectiveness of SKBs in various tasks. However, most languages have no SKBs, and manual construction of SKBs is time-consuming and labor-intensive. To tackle this challenge, we propose a simple and fully automatic method of building an SKB via an existing dictionary. We use this method to build an English SKB and a French SKB, and conduct comprehensive evaluations from both intrinsic and extrinsic perspectives. Experimental results demonstrate that the automatically built English SKB is even superior to HowNet, the most widely used SKB that takes decades to build manually. And both the English and French SKBs can bring obvious performance enhancement in multiple downstream tasks. All the code and data of this paper (except the copyrighted dictionaries) can be obtained at

PDF Abstract Findings (ACL) 2021 PDF Findings (ACL) 2021 Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here