Automatic Cost Function Learning with Interpretable Compositional Networks

23 Feb 2020Florian RichouxJean-François Baffier

Cost Function Networks (CFN) are a formalism in Constraint Programming to model combinatorial satisfaction or optimization problems. By associating a function to each constraint type to evaluate the quality of an assignment, it extends the expressivity of regular CSP/COP formalisms but at a price of making harder the problem modeling... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet