Automatic dysarthric speech detection exploiting pairwise distance-based convolutional neural networks

15 Nov 2020  ·  P. Janbakhshi, I. Kodrasi, H. Bourlard ·

Automatic dysarthric speech detection can provide reliable and cost-effective computer-aided tools to assist the clinical diagnosis and management of dysarthria. In this paper we propose a novel automatic dysarthric speech detection approach based on analyses of pairwise distance matrices using convolutional neural networks (CNNs). We represent utterances through articulatory posteriors and consider pairs of phonetically-balanced representations, with one representation from a healthy speaker (i.e., the reference representation) and the other representation from the test speaker (i.e., test representation). Given such pairs of reference and test representations, features are first extracted using a feature extraction front-end, a frame-level distance matrix is computed, and the obtained distance matrix is considered as an image by a CNN-based binary classifier. The feature extraction, distance matrix computation, and CNN-based classifier are jointly optimized in an end-to-end framework. Experimental results on two databases of healthy and dysarthric speakers for different languages and pathologies show that the proposed approach yields a high dysarthric speech detection performance, outperforming other CNN-based baseline approaches.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here