Automatic Estimation of Intelligibility Measure for Consonants in Speech

12 May 2020  ·  Ali Abavisani, Mark Hasegawa-Johnson ·

In this article, we provide a model to estimate a real-valued measure of the intelligibility of individual speech segments. We trained regression models based on Convolutional Neural Networks (CNN) for stop consonants \textipa{/p,t,k,b,d,g/} associated with vowel \textipa{/A/}, to estimate the corresponding Signal to Noise Ratio (SNR) at which the Consonant-Vowel (CV) sound becomes intelligible for Normal Hearing (NH) ears. The intelligibility measure for each sound is called SNR$_{90}$, and is defined to be the SNR level at which human participants are able to recognize the consonant at least 90\% correctly, on average, as determined in prior experiments with NH subjects. Performance of the CNN is compared to a baseline prediction based on automatic speech recognition (ASR), specifically, a constant offset subtracted from the SNR at which the ASR becomes capable of correctly labeling the consonant. Compared to baseline, our models were able to accurately estimate the SNR$_{90}$~intelligibility measure with less than 2 [dB$^2$] Mean Squared Error (MSE) on average, while the baseline ASR-defined measure computes SNR$_{90}$~with a variance of 5.2 to 26.6 [dB$^2$], depending on the consonant.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here