Automatic Frame Selection using CNN in Ultrasound Elastography

17 Feb 2020  ·  Abdelrahman Zayed, Guy Cloutier, Hassan Rivaz ·

Ultrasound elastography is used to estimate the mechanical properties of the tissue by monitoring its response to an internal or external force. Different levels of deformation are obtained from different tissue types depending on their mechanical properties, where stiffer tissues deform less. Given two radio frequency (RF) frames collected before and after some deformation, we estimate displacement and strain images by comparing the RF frames. The quality of the strain image is dependent on the type of motion that occurs during deformation. In-plane axial motion results in high-quality strain images, whereas out-of-plane motion results in low-quality strain images. In this paper, we introduce a new method using a convolutional neural network (CNN) to determine the suitability of a pair of RF frames for elastography in only 5.4 ms. Our method could also be used to automatically choose the best pair of RF frames, yielding a high-quality strain image. The CNN was trained on 3,818 pairs of RF frames, while testing was done on 986 new unseen pairs, achieving an accuracy of more than 91%. The RF frames were collected from both phantom and in vivo data.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods