Automatic Image Annotation via Label Transfer in the Semantic Space

16 May 2016Tiberio UricchioLamberto BallanLorenzo SeidenariAlberto Del Bimbo

Automatic image annotation is among the fundamental problems in computer vision and pattern recognition, and it is becoming increasingly important in order to develop algorithms that are able to search and browse large-scale image collections. In this paper, we propose a label propagation framework based on Kernel Canonical Correlation Analysis (KCCA), which builds a latent semantic space where correlation of visual and textual features are well preserved into a semantic embedding... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet