Automatic low-bit hybrid quantization of neural networks through meta learning

24 Apr 2020  ·  Tao Wang, Junsong Wang, Chang Xu, Chao Xue ·

Model quantization is a widely used technique to compress and accelerate deep neural network (DNN) inference, especially when deploying to edge or IoT devices with limited computation capacity and power consumption budget. The uniform bit width quantization across all the layers is usually sub-optimal and the exploration of hybrid quantization for different layers is vital for efficient deep compression. In this paper, we employ the meta learning method to automatically realize low-bit hybrid quantization of neural networks. A MetaQuantNet, together with a Quantization function, are trained to generate the quantized weights for the target DNN. Then, we apply a genetic algorithm to search the best hybrid quantization policy that meets compression constraints. With the best searched quantization policy, we subsequently retrain or finetune to further improve the performance of the quantized target network. Extensive experiments demonstrate the performance of searched hybrid quantization scheme surpass that of uniform bitwidth counterpart. Compared to the existing reinforcement learning (RL) based hybrid quantization search approach that relies on tedious explorations, our meta learning approach is more efficient and effective for any compression requirements since the MetaQuantNet only needs be trained once.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here