Automatic Query Image Disambiguation for Content-Based Image Retrieval

2 Nov 2017  ·  Björn Barz, Joachim Denzler ·

Query images presented to content-based image retrieval systems often have various different interpretations, making it difficult to identify the search objective pursued by the user. We propose a technique for overcoming this ambiguity, while keeping the amount of required user interaction at a minimum. To achieve this, the neighborhood of the query image is divided into coherent clusters from which the user may choose the relevant ones. A novel feedback integration technique is then employed to re-rank the entire database with regard to both the user feedback and the original query. We evaluate our approach on the publicly available MIRFLICKR-25K dataset, where it leads to a relative improvement of average precision by 23% over the baseline retrieval, which does not distinguish between different image senses.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here