Automatic Validation of Textual Attribute Values in E-commerce Catalog by Learning with Limited Labeled Data

15 Jun 2020  ·  Yaqing Wang, Yifan Ethan Xu, Xi-An Li, Xin Luna Dong, Jing Gao ·

Product catalogs are valuable resources for eCommerce website. In the catalog, a product is associated with multiple attributes whose values are short texts, such as product name, brand, functionality and flavor. Usually individual retailers self-report these key values, and thus the catalog information unavoidably contains noisy facts. Although existing deep neural network models have shown success in conducting cross-checking between two pieces of texts, their success has to be dependent upon a large set of quality labeled data, which are hard to obtain in this validation task: products span a variety of categories. To address the aforementioned challenges, we propose a novel meta-learning latent variable approach, called MetaBridge, which can learn transferable knowledge from a subset of categories with limited labeled data and capture the uncertainty of never-seen categories with unlabeled data. More specifically, we make the following contributions. (1) We formalize the problem of validating the textual attribute values of products from a variety of categories as a natural language inference task in the few-shot learning setting, and propose a meta-learning latent variable model to jointly process the signals obtained from product profiles and textual attribute values. (2) We propose to integrate meta learning and latent variable in a unified model to effectively capture the uncertainty of various categories. (3) We propose a novel objective function based on latent variable model in the few-shot learning setting, which ensures distribution consistency between unlabeled and labeled data and prevents overfitting by sampling from the learned distribution. Extensive experiments on real eCommerce datasets from hundreds of categories demonstrate the effectiveness of MetaBridge on textual attribute validation and its outstanding performance compared with state-of-the-art approaches.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here