Automatically Inferring Data Quality for Spatiotemporal Forecasting

ICLR 2018 Sungyong SeoArash MoheghGeorge Ban-WeissYan Liu

Spatiotemporal forecasting has become an increasingly important prediction task in machine learning and statistics due to its vast applications, such as climate modeling, traffic prediction, video caching predictions, and so on. While numerous studies have been conducted, most existing works assume that the data from different sources or across different locations are equally reliable... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.