AutoMMLab: Automatically Generating Deployable Models from Language Instructions for Computer Vision Tasks

23 Feb 2024  ·  Zekang Yang, Wang Zeng, Sheng Jin, Chen Qian, Ping Luo, Wentao Liu ·

Automated machine learning (AutoML) is a collection of techniques designed to automate the machine learning development process. While traditional AutoML approaches have been successfully applied in several critical steps of model development (e.g. hyperparameter optimization), there lacks a AutoML system that automates the entire end-to-end model production workflow for computer vision. To fill this blank, we propose a novel request-to-model task, which involves understanding the user's natural language request and execute the entire workflow to output production-ready models. This empowers non-expert individuals to easily build task-specific models via a user-friendly language interface. To facilitate development and evaluation, we develop a new experimental platform called AutoMMLab and a new benchmark called LAMP for studying key components in the end-to-end request-to-model pipeline. Hyperparameter optimization (HPO) is one of the most important components for AutoML. Traditional approaches mostly rely on trial-and-error, leading to inefficient parameter search. To solve this problem, we propose a novel LLM-based HPO algorithm, called HPO-LLaMA. Equipped with extensive knowledge and experience in model hyperparameter tuning, HPO-LLaMA achieves significant improvement of HPO efficiency. Dataset and code are available at https://github.com/yang-ze-kang/AutoMMLab.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods