Autonomous Navigation in Unknown Environments using Sparse Kernel-based Occupancy Mapping

5 Feb 2020  ·  Thai Duong, Nikhil Das, Michael Yip, Nikolay Atanasov ·

This paper focuses on real-time occupancy mapping and collision checking onboard an autonomous robot navigating in an unknown environment. We propose a new map representation, in which occupied and free space are separated by the decision boundary of a kernel perceptron classifier. We develop an online training algorithm that maintains a very sparse set of support vectors to represent obstacle boundaries in configuration space. We also derive conditions that allow complete (without sampling) collision-checking for piecewise-linear and piecewise-polynomial robot trajectories. We demonstrate the effectiveness of our mapping and collision checking algorithms for autonomous navigation of an Ackermann-drive robot in unknown environments.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here