AutoOpt: A General Framework for Automatically Designing Metaheuristic Optimization Algorithms with Diverse Structures

3 Apr 2022  ·  Qi Zhao, Bai Yan, Xianglong Chen, Taiwei Hu, Shi Cheng, Yuhui Shi ·

Metaheuristics are widely recognized gradient-free solvers to hard problems that do not meet the rigorous mathematical assumptions of conventional solvers. The automated design of metaheuristic algorithms provides an attractive path to relieve manual design effort and gain enhanced performance beyond human-made algorithms. However, the specific algorithm prototype and linear algorithm representation in the current automated design pipeline restrict the design within a fixed algorithm structure, which hinders discovering novelties and diversity across the metaheuristic family. To address this challenge, this paper proposes a general framework, AutoOpt, for automatically designing metaheuristic algorithms with diverse structures. AutoOpt contains three innovations: (i) A general algorithm prototype dedicated to covering the metaheuristic family as widely as possible. It promotes high-quality automated design on different problems by fully discovering potentials and novelties across the family. (ii) A directed acyclic graph algorithm representation to fit the proposed prototype. Its flexibility and evolvability enable discovering various algorithm structures in a single run of design, thus boosting the possibility of finding high-performance algorithms. (iii) A graph representation embedding method offering an alternative compact form of the graph to be manipulated, which ensures AutoOpt's generality. Experiments on numeral functions and real applications validate AutoOpt's efficiency and practicability.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here