AutoPhase: Compiler Phase-Ordering for High Level Synthesis with Deep Reinforcement Learning

The performance of the code generated by a compiler depends on the order in which the optimization passes are applied. In high-level synthesis, the quality of the generated circuit relates directly to the code generated by the front-end compiler. Choosing a good order--often referred to as the phase-ordering problem--is an NP-hard problem. In this paper, we evaluate a new technique to address the phase-ordering problem: deep reinforcement learning. We implement a framework in the context of the LLVM compiler to optimize the ordering for HLS programs and compare the performance of deep reinforcement learning to state-of-the-art algorithms that address the phase-ordering problem. Overall, our framework runs one to two orders of magnitude faster than these algorithms, and achieves a 16% improvement in circuit performance over the -O3 compiler flag.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here