Axi-Higgs Cosmology

22 Feb 2021  ·  Leo WH Fung, Lingfeng Li, Tao Liu, Hoang Nhan Luu, Yu-Cheng Qiu, S. -H. Henry Tye ·

If the electroweak Higgs vacuum expectation value $v$ in early universe is $\sim 1 \%$ higher than its present value $v_0=246$ GeV, the $^7$Li puzzle in BBN and the CMB/$\Lambda$CDM tension with late-universe measurements on Hubble parameter are mitigated. We propose a model of an axion coupled to the Higgs field, named ``axi-Higgs'', with its mass $m_a \sim 10^{-30} - 10^{-29}\,{\rm eV}$ and decay constant $f_a \sim 10^{17} - 10^{18}\,{\rm GeV}$, to achieve this goal. The axion initial value $a_{\rm ini}$ yields an initial $\Delta v_{\rm ini}/v_0 \sim 0.01$ throughout the BBN-recombination epoch and a percent level contribution to the total matter density today. Because of its very large de Broglie wavelength, this axion matter density $\omega_a$ suppresses the matter power spectrum, alleviating the CMB/$\Lambda$CDM $S_8/\sigma_8$ tension with the weak-lensing data. It also explains the recently reported isotropic cosmic birefringence by its coupling with photons. Adding the axion ($m \sim 10^{-22}\,$eV) in the fuzzy dark matter model to the axi-Higgs model allows bigger $\Delta v_{\rm rec}$ and $\omega_a$ to address the Hubble and $S_8/\sigma_8$ tensions simultaneously. The model predicts that $\Delta v$ may be detected by the spectral measurements of quasars, while its oscillation may be observed in the atomic clock measurements.

PDF Abstract
No code implementations yet. Submit your code now

Categories


High Energy Physics - Phenomenology Cosmology and Nongalactic Astrophysics High Energy Physics - Theory