B-test: A Non-parametric, Low Variance Kernel Two-sample Test

NeurIPS 2013 Wojciech ZarembaArthur GrettonMatthew Blaschko

We propose a family of maximum mean discrepancy (MMD) kernel two-sample tests that have low sample complexity and are consistent. The test has a hyperparameter that allows one to control the tradeoff between sample complexity and computational time... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet