Back-Translation as Strategy to Tackle the Lack of Corpus in Natural Language Generation from Semantic Representations

This paper presents an exploratory study that aims to evaluate the usefulness of back-translation in Natural Language Generation (NLG) from semantic representations for non-English languages. Specifically, Abstract Meaning Representation and Brazilian Portuguese (BP) are chosen as semantic representation and language, respectively. Two methods (focused on Statistical and Neural Machine Translation) are evaluated on two datasets (one automatically generated and another one human-generated) to compare the performance in a real context. Also, several cuts according to quality measures are performed to evaluate the importance (or not) of the data quality in NLG. Results show that there are still many improvements to be made but this is a promising approach.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here