Background Modeling Using Adaptive Pixelwise Kernel Variances in a Hybrid Feature Space

5 Nov 2015  ·  Manjunath Narayana, Allen Hanson, Erik Learned-Miller ·

Recent work on background subtraction has shown developments on two major fronts. In one, there has been increasing sophistication of probabilistic models, from mixtures of Gaussians at each pixel [7], to kernel density estimates at each pixel [1], and more recently to joint domainrange density estimates that incorporate spatial information [6]. Another line of work has shown the benefits of increasingly complex feature representations, including the use of texture information, local binary patterns, and recently scale-invariant local ternary patterns [4]. In this work, we use joint domain-range based estimates for background and foreground scores and show that dynamically choosing kernel variances in our kernel estimates at each individual pixel can significantly improve results. We give a heuristic method for selectively applying the adaptive kernel calculations which is nearly as accurate as the full procedure but runs much faster. We combine these modeling improvements with recently developed complex features [4] and show significant improvements on a standard backgrounding benchmark.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here