Balancing Interpretability and Predictive Accuracy for Unsupervised Tensor Mining

4 Sep 2017Ishmam ZabirEvangelos E. Papalexakis

The PARAFAC tensor decomposition has enjoyed an increasing success in exploratory multi-aspect data mining scenarios. A major challenge remains the estimation of the number of latent factors (i.e., the rank) of the decomposition, which yields high-quality, interpretable results... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet