Band-Limited Gaussian Processes: The Sinc Kernel

NeurIPS 2019  ·  Felipe Tobar ·

We propose a novel class of Gaussian processes (GPs) whose spectra have compact support, meaning that their sample trajectories are almost-surely band limited. As a complement to the growing literature on spectral design of covariance kernels, the core of our proposal is to model power spectral densities through a rectangular function, which results in a kernel based on the sinc function with straightforward extensions to non-centred (around zero frequency) and frequency-varying cases. In addition to its use in regression, the relationship between the sinc kernel and the classic theory is illuminated, in particular, the Shannon-Nyquist theorem is interpreted as posterior reconstruction under the proposed kernel. Additionally, we show that the sinc kernel is instrumental in two fundamental signal processing applications: first, in stereo amplitude modulation, where the non-centred sinc kernel arises naturally. Second, for band-pass filtering, where the proposed kernel allows for a Bayesian treatment that is robust to observation noise and missing data. The developed theory is complemented with illustrative graphic examples and validated experimentally using real-world data.

PDF Abstract NeurIPS 2019 PDF NeurIPS 2019 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here