Band-limited Training and Inference for Convolutional Neural Networks

21 Nov 2019  ·  Adam Dziedzic, John Paparrizos, Sanjay Krishnan, Aaron Elmore, Michael Franklin ·

The convolutional layers are core building blocks of neural network architectures. In general, a convolutional filter applies to the entire frequency spectrum of the input data. We explore artificially constraining the frequency spectra of these filters and data, called band-limiting, during training. The frequency domain constraints apply to both the feed-forward and back-propagation steps. Experimentally, we observe that Convolutional Neural Networks (CNNs) are resilient to this compression scheme and results suggest that CNNs learn to leverage lower-frequency components. In particular, we found: (1) band-limited training can effectively control the resource usage (GPU and memory); (2) models trained with band-limited layers retain high prediction accuracy; and (3) requires no modification to existing training algorithms or neural network architectures to use unlike other compression schemes.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here