Bandit Policies for Reliable Cellular Network Handovers in Extreme Mobility

28 Oct 2020  ·  Yuanjie Li, Esha Datta, Jiaxin Ding, Ness Shroff, Xin Liu ·

The demand for seamless Internet access under extreme user mobility, such as on high-speed trains and vehicles, has become a norm rather than an exception. However, the 4G/5G mobile network is not always reliable to meet this demand, with non-negligible failures during the handover between base stations. A fundamental challenge of reliability is to balance the exploration of more measurements for satisfactory handover, and exploitation for timely handover (before the fast-moving user leaves the serving base station's radio coverage). This paper formulates this trade-off in extreme mobility as a composition of two distinct multi-armed bandit problems. We propose Bandit and Threshold Tuning (BATT) to minimize the regret of handover failures in extreme mobility. BATT uses $\epsilon$-binary-search to optimize the threshold of the serving cell's signal strength to initiate the handover procedure with $\mathcal{O}(\log J \log T)$ regret.It further devises opportunistic Thompson sampling, which optimizes the sequence of the target cells to measure for reliable handover with $\mathcal{O}(\log T)$ regret.Our experiment over a real LTE dataset from Chinese high-speed rails validates significant regret reduction and a 29.1% handover failure reduction.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here