Bandits with Feedback Graphs and Switching Costs

We study the adversarial multi-armed bandit problem where partial observations are available and where, in addition to the loss incurred for each action, a \emph{switching cost} is incurred for shifting to a new action. All previously known results incur a factor proportional to the independence number of the feedback graph. We give a new algorithm whose regret guarantee depends only on the domination number of the graph. We further supplement that result with a lower bound. Finally, we also give a new algorithm with improved policy regret bounds when partial counterfactual feedback is available.

PDF Abstract NeurIPS 2019 PDF NeurIPS 2019 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here