Bandwidth-based Step-Sizes for Non-Convex Stochastic Optimization

5 Jun 2021  ·  Xiaoyu Wang, Mikael Johansson ·

Many popular learning-rate schedules for deep neural networks combine a decaying trend with local perturbations that attempt to escape saddle points and bad local minima. We derive convergence guarantees for bandwidth-based step-sizes, a general class of learning rates that are allowed to vary in a banded region. This framework includes many popular cyclic and non-monotonic step-sizes for which no theoretical guarantees were previously known. We provide worst-case guarantees for SGD on smooth non-convex problems under several bandwidth-based step sizes, including stagewise $1/\sqrt{t}$ and the popular step-decay (constant and then drop by a constant), which is also shown to be optimal. Moreover, we show that its momentum variant converges as fast as SGD with the bandwidth-based step-decay step-size. Finally, we propose novel step-size schemes in the bandwidth-based family and verify their efficiency on several deep neural network training tasks.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods