BaRC: Backward Reachability Curriculum for Robotic Reinforcement Learning

16 Jun 2018  ·  Boris Ivanovic, James Harrison, Apoorva Sharma, Mo Chen, Marco Pavone ·

Model-free Reinforcement Learning (RL) offers an attractive approach to learn control policies for high-dimensional systems, but its relatively poor sample complexity often forces training in simulated environments. Even in simulation, goal-directed tasks whose natural reward function is sparse remain intractable for state-of-the-art model-free algorithms for continuous control. The bottleneck in these tasks is the prohibitive amount of exploration required to obtain a learning signal from the initial state of the system. In this work, we leverage physical priors in the form of an approximate system dynamics model to design a curriculum scheme for a model-free policy optimization algorithm. Our Backward Reachability Curriculum (BaRC) begins policy training from states that require a small number of actions to accomplish the task, and expands the initial state distribution backwards in a dynamically-consistent manner once the policy optimization algorithm demonstrates sufficient performance. BaRC is general, in that it can accelerate training of any model-free RL algorithm on a broad class of goal-directed continuous control MDPs. Its curriculum strategy is physically intuitive, easy-to-tune, and allows incorporating physical priors to accelerate training without hindering the performance, flexibility, and applicability of the model-free RL algorithm. We evaluate our approach on two representative dynamic robotic learning problems and find substantial performance improvement relative to previous curriculum generation techniques and naive exploration strategies.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here