BART for Post-Correction of OCR Newspaper Text

Optical character recognition (OCR) from newspaper page images is susceptible to noise due to degradation of old documents and variation in typesetting. In this report, we present a novel approach to OCR post-correction. We cast error correction as a translation task, and fine-tune BART, a transformer-based sequence-to-sequence language model pretrained to denoise corrupted text. We are the first to use sentence-level transformer models for OCR post-correction, and our best model achieves a 29.4% improvement in character accuracy over the original noisy OCR text. Our results demonstrate the utility of pretrained language models for dealing with noisy text.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here