BasisConv: A method for compressed representation and learning in CNNs

11 Jun 2019  ·  Muhammad Tayyab, Abhijit Mahalanobis ·

It is well known that Convolutional Neural Networks (CNNs) have significant redundancy in their filter weights. Various methods have been proposed in the literature to compress trained CNNs. These include techniques like pruning weights, filter quantization and representing filters in terms of a basis functions. Our approach falls in this latter class of strategies, but is distinct in that that we show both compressed learning and representation can be achieved without significant modifications of popular CNN architectures. Specifically, any convolution layer of the CNN is easily replaced by two successive convolution layers: the first is a set of fixed filters (that represent the knowledge space of the entire layer and do not change), which is followed by a layer of one-dimensional filters (that represent the learned knowledge in this space). For the pre-trained networks, the fixed layer is just the truncated eigen-decompositions of the original filters. The 1D filters are initialized as the weights of linear combination, but are fine-tuned to recover any performance loss due to the truncation. For training networks from scratch, we use a set of random orthogonal fixed filters (that never change), and learn the 1D weight vector directly from the labeled data. Our method substantially reduces i) the number of learnable parameters during training, and ii) the number of multiplication operations and filter storage requirements during implementation. It does so without requiring any special operators in the convolution layer, and extends to all known popular CNN architectures. We apply our method to four well known network architectures trained with three different data sets. Results show a consistent reduction in i) the number of operations by up to a factor of 5, and ii) number of learnable parameters by up to a factor of 18, with less than 3% drop in performance on the CIFAR100 dataset.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods