Batch Bayesian Optimization on Permutations using Acquisition Weighted Kernels

26 Feb 2021  ·  Changyong Oh, Roberto Bondesan, Efstratios Gavves, Max Welling ·

In this work we propose a batch Bayesian optimization method for combinatorial problems on permutations, which is well suited for expensive cost functions on permutations. We introduce LAW, a new efficient batch acquisition method based on the determinantal point process, using an acquisition weighted kernel. Relying on multiple parallel evaluations, LAW accelerates the search for the optimal permutation. We provide a regret analysis for our method to gain insight in its theoretical properties. We then apply the framework to permutation problems, which have so far received little attention in the Bayesian Optimization literature, despite their practical importance. We call this method LAW2ORDER. We evaluate the method on several standard combinatorial problems involving permutations such as quadratic assignment, flowshop scheduling and the traveling salesman, as well as on a structure learning task.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here