Batch Informed Trees (BIT*): Sampling-based Optimal Planning via the Heuristically Guided Search of Implicit Random Geometric Graphs

22 May 2014  ·  Jonathan D. Gammell, Siddhartha S. Srinivasa, Timothy D. Barfoot ·

In this paper, we present Batch Informed Trees (BIT*), a planning algorithm based on unifying graph- and sampling-based planning techniques. By recognizing that a set of samples describes an implicit random geometric graph (RGG), we are able to combine the efficient ordered nature of graph-based techniques, such as A*, with the anytime scalability of sampling-based algorithms, such as Rapidly-exploring Random Trees (RRT). BIT* uses a heuristic to efficiently search a series of increasingly dense implicit RGGs while reusing previous information. It can be viewed as an extension of incremental graph-search techniques, such as Lifelong Planning A* (LPA*), to continuous problem domains as well as a generalization of existing sampling-based optimal planners. It is shown that it is probabilistically complete and asymptotically optimal. We demonstrate the utility of BIT* on simulated random worlds in $\mathbb{R}^2$ and $\mathbb{R}^8$ and manipulation problems on CMU's HERB, a 14-DOF two-armed robot. On these problems, BIT* finds better solutions faster than RRT, RRT*, Informed RRT*, and Fast Marching Trees (FMT*) with faster anytime convergence towards the optimum, especially in high dimensions.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Robotics

Datasets


  Add Datasets introduced or used in this paper