BattRAE: Bidimensional Attention-Based Recursive Autoencoders for Learning Bilingual Phrase Embeddings

25 May 2016 Biao Zhang Deyi Xiong Jinsong Su

In this paper, we propose a bidimensional attention based recursive autoencoder (BattRAE) to integrate clues and sourcetarget interactions at multiple levels of granularity into bilingual phrase representations. We employ recursive autoencoders to generate tree structures of phrases with embeddings at different levels of granularity (e.g., words, sub-phrases and phrases)... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet