Bayesian Active Summarization

9 Oct 2021  ·  Alexios Gidiotis, Grigorios Tsoumakas ·

Bayesian Active Learning has had significant impact to various NLP problems, but nevertheless it's application to text summarization has been explored very little. We introduce Bayesian Active Summarization (BAS), as a method of combining active learning methods with state-of-the-art summarization models... Our findings suggest that BAS achieves better and more robust performance, compared to random selection, particularly for small and very small data annotation budgets. Using BAS we showcase it is possible to leverage large summarization models to effectively solve real-world problems with very limited annotated data. read more

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here