Bayesian Belief Updating of Spatiotemporal Seizure Dynamics

Epileptic seizure activity shows complicated dynamics in both space and time. To understand the evolution and propagation of seizures spatially extended sets of data need to be analysed. We have previously described an efficient filtering scheme using variational Laplace that can be used in the Dynamic Causal Modelling (DCM) framework [Friston, 2003] to estimate the temporal dynamics of seizures recorded using either invasive or non-invasive electrical recordings (EEG/ECoG). Spatiotemporal dynamics are modelled using a partial differential equation -- in contrast to the ordinary differential equation used in our previous work on temporal estimation of seizure dynamics [Cooray, 2016]. We provide the requisite theoretical background for the method and test the ensuing scheme on simulated seizure activity data and empirical invasive ECoG data. The method provides a framework to assimilate the spatial and temporal dynamics of seizure activity, an aspect of great physiological and clinical importance.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here