Bayesian data assimilation to support informed decision-making in individualised chemotherapy

20 Sep 2019  ·  Maier Corinna, Hartung Niklas, de Wiljes Jana, Kloft Charlotte, Huisinga Wilhelm ·

An essential component of therapeutic drug/biomarker monitoring (TDM) is to combine patient data with prior knowledge for model-based predictions of therapy outcomes. Current Bayesian forecasting tools typically rely only on the most probable model parameters (maximum a-posteriori (MAP) estimate)... This MAP-based approach, however, does neither necessarily predict the most probable outcome nor does it quantify the risks of treatment inefficacy or toxicity. Bayesian data assimilation (DA) methods overcome these limitations by providing a comprehensive uncertainty quantification. We compare DA methods with MAP-based approaches and show how probabilistic statements about key markers related to chemotherapy-induced neutropenia can be leveraged for more informative decision support in individualised chemotherapy. Sequential Bayesian DA proved to be most computational efficient for handling interoccasion variability and integrating TDM data. For new digital monitoring devices enabling more frequent data collection, these features will be of critical importance to improve patient care decisions in various therapeutic areas. read more

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here