Bayesian Deep Learning via Stochastic Gradient MCMC with a Stochastic Approximation Adaptation

ICLR 2019  ·  Wei Deng, Xiao Zhang, Faming Liang, Guang Lin ·

We propose a robust Bayesian deep learning algorithm to infer complex posteriors with latent variables. Inspired by dropout, a popular tool for regularization and model ensemble, we assign sparse priors to the weights in deep neural networks (DNN) in order to achieve automatic “dropout” and avoid over-fitting. By alternatively sampling from posterior distribution through stochastic gradient Markov Chain Monte Carlo (SG-MCMC) and optimizing latent variables via stochastic approximation (SA), the trajectory of the target weights is proved to converge to the true posterior distribution conditioned on optimal latent variables. This ensures a stronger regularization on the over-fitted parameter space and more accurate uncertainty quantification on the decisive variables. Simulations from large-p-small-n regressions showcase the robustness of this method when applied to models with latent variables. Additionally, its application on the convolutional neural networks (CNN) leads to state-of-the-art performance on MNIST and Fashion MNIST datasets and improved resistance to adversarial attacks.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here