Bayesian Learning of Kernel Embeddings

7 Mar 2016  ·  Seth Flaxman, Dino Sejdinovic, John P. Cunningham, Sarah Filippi ·

Kernel methods are one of the mainstays of machine learning, but the problem of kernel learning remains challenging, with only a few heuristics and very little theory. This is of particular importance in methods based on estimation of kernel mean embeddings of probability measures. For characteristic kernels, which include most commonly used ones, the kernel mean embedding uniquely determines its probability measure, so it can be used to design a powerful statistical testing framework, which includes nonparametric two-sample and independence tests. In practice, however, the performance of these tests can be very sensitive to the choice of kernel and its lengthscale parameters. To address this central issue, we propose a new probabilistic model for kernel mean embeddings, the Bayesian Kernel Embedding model, combining a Gaussian process prior over the Reproducing Kernel Hilbert Space containing the mean embedding with a conjugate likelihood function, thus yielding a closed form posterior over the mean embedding. The posterior mean of our model is closely related to recently proposed shrinkage estimators for kernel mean embeddings, while the posterior uncertainty is a new, interesting feature with various possible applications. Critically for the purposes of kernel learning, our model gives a simple, closed form marginal pseudolikelihood of the observed data given the kernel hyperparameters. This marginal pseudolikelihood can either be optimized to inform the hyperparameter choice or fully Bayesian inference can be used.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here