Bayesian Median Autoregression for Robust Time Series Forecasting

4 Jan 2020  ·  Zijian Zeng, Meng Li ·

We develop a Bayesian median autoregressive (BayesMAR) model for time series forecasting. The proposed method utilizes time-varying quantile regression at the median, favorably inheriting the robustness of median regression in contrast to the widely used mean-based methods. Motivated by a working Laplace likelihood approach in Bayesian quantile regression, BayesMAR adopts a parametric model bearing the same structure of autoregressive (AR) models by altering the Gaussian error to Laplace, leading to a simple, robust, and interpretable modeling strategy for time series forecasting. We estimate model parameters by Markov chain Monte Carlo. Bayesian model averaging (BMA) is used to account for model uncertainty including the uncertainty in the autoregressive order, in addition to a Bayesian model selection approach. The proposed methods are illustrated using simulation and real data applications. An application to U.S. macroeconomic data forecasting shows that BayesMAR leads to favorable and often superior predictive performances than the selected mean-based alternatives under various loss functions. The proposed methods are generic and can be used to complement a rich class of methods that builds on the AR models.

PDF Abstract

Categories


Applications Econometrics Methodology

Datasets


  Add Datasets introduced or used in this paper