Bayesian Meta-Learning for Few-Shot 3D Shape Completion

Estimating the 3D shape of real-world objects is a key perceptual challenge. It requires going from partial observations, which are often too sparse and incomprehensible for the human eye, to detailed shape representations that vary significantly across categories and instances. We propose to cast shape completion as a Bayesian meta-learning problem to facilitate the transfer of knowledge learned from observing one object into estimating the shape of another object. To combine the Bayesian framework with an approach that uses implicit 3D object representation, we introduce an encoder that describes the posterior distribution of a latent representation conditioned on sparse point clouds. With its ability to isolate object-specific properties from object-agnostic properties, our meta-learning algorithm enables accurate shape completion of newly-encountered objects from sparse observations. We demonstrate the efficacy of our proposed method with experimental results on the standard ShapeNet and ICL-NUIM benchmarks.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here