Bayesian Nonparametric Poisson-Process Allocation for Time-Sequence Modeling

Analyzing the underlying structure of multiple time-sequences provides insights into the understanding of social networks and human activities. In this work, we present the \emph{Bayesian nonparametric Poisson process allocation} (BaNPPA), a latent-function model for time-sequences, which automatically infers the number of latent functions... (read more)

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet