Bayesian Optimisation for Machine Translation

22 Dec 2014  ·  Yishu Miao, Ziyu Wang, Phil Blunsom ·

This paper presents novel Bayesian optimisation algorithms for minimum error rate training of statistical machine translation systems. We explore two classes of algorithms for efficiently exploring the translation space, with the first based on N-best lists and the second based on a hypergraph representation that compactly represents an exponential number of translation options. Our algorithms exhibit faster convergence and are capable of obtaining lower error rates than the existing translation model specific approaches, all within a generic Bayesian optimisation framework. Further more, we also introduce a random embedding algorithm to scale our approach to sparse high dimensional feature sets.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here